Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Maryam Golshani

Pasteur Institute of Iran, Iran

Title: A recombinant subunit vaccine based on truncated Omp2b protein induces protection against Brucella infection in BALB/c mice

Biography

Biography: Maryam Golshani

Abstract

Objectives: Brucellosis is the most common bacterial zoonosis worldwide and no safe and effective vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. According to our in silico studies, Omp2b is predicted to be potentially immunogenic antigen conserved in main Brucella pathogens. The aim of this study was to design truncated form of Omp2b and to evaluate the immunogenicity and protective efficacy of a recombinant protein vaccine encoding tOmp2b. Methods: Bioinformatics tools were used to design the truncated protein based on conserved domains and regions of epitopes with strong affinity for MHC molecules. The humoral/cellular immune response and protection levels against challenge with wild B. melitensis and B. abortus infections were evaluated in rtOmp2b+ adjuvants immunized mice and control groups. Results: Vaccination of BALB/c mice rtOmp2b provided the significant protection level against both B. melitenisis and B. abortus. Moreover, rtOmp2b elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production. Conclusion: According to the results, rtOmp2b is able to induce cross-protection against B. melitensis and B. abortus infections. Therefore, it could be a new potential candidate for the development of Brucella subunit vaccines.