Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Jalil Mehrzd

Ferdowsi University of Mashhad, Iran

Title: Bioluminescence-based detection of brain immune cells apoptosis and ATP depletion induced by aflatoxin B1

Biography

Biography: Jalil Mehrzd

Abstract

Caspases-mediated apoptosis/cell death activation is key regulatory response in many physiopathological conditions. Application of bioluminescence and the reaction of luciferase would provide a powerfully novel in vitro/vivo assay for apoptosis detecion. As key brain immune cells, astrocytes and microglials, are vital part of the central nervous system (CNS); they are the main responder to inflammation in CNS; any disruption on their function would lead to CNS damage. Aflatoxin B1 (AFB1) is commonly found in foodstuffs, and can be the cause of many diseases including cancer. AFB1 and its metabolites cause oxidative stress in especially the CNS-derived cells, adversely affecting their normal activities, thus leading to the neurodegenerative diseases including multiple sclerosis (MS), Alzheimer’s and Huntington’s diseases. Considering the importance of astrocytes and the inevitable existence of AFB1 in the feed/foods, worldwide, the study of astrocytes-AFB1 interactions is valuable. We therefore investigated the impact of AFB1 on the apoptosis of one of the key accessory supportive CNS, astrocytes, using several biochemical experimentations including intracellular ATP and caspases 3/7 measured by bioluminescence and luciferase reactions. The release of cytochrome c and apoptosis/necrosis of AFB1-treated astrocytes with various concentration of AFB1 and exposure time was also tested using Western blotting and flow cytometry techniques, respectively. Bioluminescence results revealed decreased intracellular ATP, increased caspases 3/7 activities, cytochrome-c release and apoptotic/necrotic of astrocytes particularly at higher timepoints and doses of AFB1. Considering the broad roles of astrocytes in CNS, this finding deepens our understanding of the molecular mechanisms and functional consequences of the neural cells damage neurotoxicity triggered by AFB1 exposure in mammals.